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Decomposition of D-Sets

Olga NaÂnaÂsiovaÂ1

Received July 4, 1997

The main result of this paper is the proof of a connection between abelian groups
and difference sets. From this fact we can show that any difference set can be
organized to a difference poset as a class of equivalence. We give an example
of a difference set as a conditional probability space in the sense of Kolmogoroff.

1. INTRODUCTION

Definition 1.1 (NaÂnaÂsiovaÂ, 1995). Let L be a nonempty set and * be a

partial binary operation on L. Then the set L will be called a difference set
(DS) if the following conditions hold:

(d1) for any a P L, a * a P L;
(d2) if a, b, a * b P L, then a * (a * b) P L and, moreover, a *

(a * b) 5 b;
(d3) the transitive law if a, b, c, a * b, b, * c P L, then a * c P L

and, moreover, (a * c) * (a * b) 5 b * c.

We will denote a * a 5 0a.

Definition 1.2 (NaÂnaÂsiovaÂ, 1995). Let L be a DS. The set L will be

called a group difference set (GDS) if the following condition is satisfied:

(d4) a * b P L iff b * a P L.

Definition 1.3 (NaÂnaÂsiovaÂ, 1995). Let L be a DS. If 0b * b P L, we
define a % b : 5 a * (0b * b) iff a * b P L.

If L is a DS, then the following properties are satisfied (NaÂnaÂsiovaÂ, 1995):

(1) for any a P L, a * 0a P L and a * 0a 5 a;
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(2) if c * a P L, then 0a 5 0c 5 0c * a;

(3) if c * a 5 d, then c * d 5 a;
(4) if c * b, (c * b) * a P L, then c * a, (c * a) * b P L and (c

* b) * a 5 (c * a) * b.

If L is a GDS, then:

(5) for any a P L, 0a * a P L;
(6) for a, b, P L, a * b P L iff 0a 5 0b;

(7) for a * b P L, a * b 5 0a * (b * a);
(8) the set G (a) 5 {b P L: 0a 5 0b} is an Abelian group with respect

to the operation * ;

(9) if for any a, b P L, 0a 5 0b , then L is an Abelian group with respect

to the operation * .

Proposition 1.1 (NaÂnaÂsiovaÂ, 1995). L is a GDS if it can be written as

a disjoint union of abelian groups. Conversely every such disjoint union is
a GDS.

From the last proposition it follows that if L is a GDS, then L is an

Abelian group iff for every a, b P L, 0a 5 0b.

Lemma 1.2. Let L be a DS. Then the following properties hold:
(1) If b, a, 0a * a P L, then 0a 5 0b iff b * a P L;
(2) If 0a * a, a * b, P L, then 0a * b, b * a P L.

Proof. (1) It is enough to show that 0a 5 0b implies b * a P L. Let 0a

5 0b and b, a, 0a * a P L. Then b * 0a , 0a * a P L, and from (d3) it

follows that b * a P L.
(2) If 0a * a, a * b, P L, then (d3), 0a * b P L and a * 0a , 0a * b

P L imply that b * a P L. n

If L is a DS and for any a, b P L, 0a 5 0b , then from the previous

lemma we get that a, 0 * a P L implies that for any b P L, b * a exists

in L. If 0 * a, a * b P L, then 0 * b, b * a P L. An example will show

that b * a, a * b, P L does not imply 0 * a, 0 * b P L.

2. D-POSET AND GROUP

In the following we will assume L is a DS with only one zero. This

means that for any a, b P L, 0a 5 0b.

Definition 2.1. Let L be DS. A subset of L, I(0) 5 {b P L; a * b,

b * a P L}, will be called a zero class.

Lemma 2.1. Let L be a set with the properties (d1), (d2). Then the

transitive law (d4) is fulfilled iff the following associative law holds: If a,
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b, a * b, (a * b) * c P L, then a * c, (a * c) * b P L and (a * b) *
c 5 (a * c) * b.

Proof. It is enough to show only that the associative law implies (d4),

because the opposite implication is proved in Nanasiova (1995). Let a * b,
b * c P L. Then b 5 a * (a * b), hence b * c 5 [a * (a * b)] * c. This

implies that a * c, (a * c) * (a * b) P L, and (a * c) * (a * b) 5 b * c. n

Lemma 2.2. Let L be DS. Then the following properties hold:

(1) If a * b P I (0), then 0 * (a * b) 5 (b * a).
(2) For any a, b, P I (0), a * b is defined and belongs to I (0).

(3) The zero class I (0) is an Abelian group.

(4) For any a * L and any b P I (0) the element a * b is defined.

(5) If a P L, b P I (0), and b * a is defined, then a P I (0).

Proof. (1) Let a * b P I (0). From the definition of I (0) it follows that

0 * (a * b) is defined and moreover.

0 * (a * b) 5 (a * a) * (a * b) 5 (a * (a * b)) * a 5 b * a

(2) Let a, b P I (0). Then a * 0, 0 * b implies a * b P L. On the
other hand, b * 0, 0 * a implies b * a P L. And from (1) we get a * b
P I (0).

(3) Let a, b P I (0); then we define the operation a % b : 5 a * (0 *
b). In the following we show that the set I (0) is an Abelian group with

operation % .
From (2) it follows that a * (0 * b), b * (0 * a), (0 * a) * b, (0 *

b) * a P I (0). And then ((0 * b) * a) * ((0 * a) * b) P I (0) and moreover

((0 * b) * a) * ((0 * a) * b)

5 [(0 * b) * ((0 * a) * b)] * a

5 [(0 * ((0 * a) * b)) * b] * a 5 [(b * (0 * a)) * b] * a

5 [(b * b) * (0 * a)] * a 5 [0 * (0 * a)] 5 a * a 5 0

From this it follows that (0 * b) * a 5 (0 * a) * b. Then 0 * (0 * b)

* a) 5 0 * ((0 * a) * b) and so b * (0 * a) 5 a * (0 * b). This means

a % b 5 b % a.
Let a, b, c P I (0). Then (a % b) % c, (a % c) % b) P I (0), and (a %

b) % c 5 (a * (0 * b)) * (0 * c) 5 (a * (0 * c)) * (0 * b) 5 (a % c)

% b).

Let c, d, a P I (0) and c % a 5 d % a. Then 5 c * (0 * a) 5 d *
(0 * a). From this we get

(0 * a) * c 5 (0 * a) * d

d 5 (0 * a) * ((0 * a) * c) 5 c
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For any a P I (0), a % (0 * a) 5 a * (0 * (0 * a)) 5 a * a 5 0.

This means that I (0) is an Abelian group.

(4) Let a P L and b P I (0). Then a * 0, 0 * b implies a * b.
(5) Let a P L, b P I (0), and b * a P L. Then 0 * b, b * a P L

implies 0 * a P L.

From this it follows that a P I (0). n

Let a P L and k P I (0). Then a % b k : 5 a * (0 * k).

Lemma 2.3. Let L be a DS. If for a P L we define I (a) 5 {b P L; b
* a P I (0)}. Then the following statements hold.

(1) For any b, c P I (a), c * b P I (0).

(2) The element b P I (a) iff I (b) 5 I (a).

(3) For any a P L, I(a) 5 {a * k; k P I (0)}.

(4) For any a P L, I(a) 5 {a % L k; k P I (0)}.
(5) For any a P L and for any p, q P I (0), a * ( p % q) 5 (a * p) * q.
(6) Let b, a P L and c P I (0); then a * (b * c) is defined and moreover

(a * (b * c)) 5 (a * b) * (0 * c)

(7) Let b P I (a), c P I (d ), and a * d P L. Then

b * d P L

and moreover b * c P I (a * d ).

Proof. (1) If b, c, P I (a), then b * a, a * c P L. This implies b * c
P L. On the other hand c * a, a * b implies c * b P L. This means that

c * b P I (0).
(2) Let b P I (a). Then a * b P I (0). This implies a P I (b). Moreover,

if c P I (a), then c * b P I (0). From this it follows that I (a) 5 I (b).

(3) Let b P I (a). Then a * b P I (0). This means that there is k P I (0)

such that a * b 5 k. Then a * k 5 b. From this I (a) 5 {a * k; k P I (0)}.

(4) It follows directly from definition % L and (3).
(5) Let a P L and p, q P I (0). Then a * ( p % q), a * p P I (a). Then

I (a) 5 I (a * p) and so (a * p) * q P I (a). From this it follows that there

is [(a * p) * q] * [a * ( p % q)] and moreover

[(a * p) * q] * [a * ( p % q)]

5 [(a * p) * [a * ( p % q)]] * q

5 [(a * [a * ( p % q)]) * p] * q

5 [( p % q) * p] * q 5 [( p * (0 * q)) * p] * q

5 [( p * p) * (0 * q)] * q 5 (0 * (0 * q)) * q 5 q * q 5 0
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And so (a * p) * q 5 a * ( p % q).

(6) Let a, b P L and c P I (0). Then a * b, b * c implies a * c P L and

(a * c) * (a * b) 5 b * c

(a * c) * (b * c) 5 a * b

(a * (b * c)) * c 5 a * b

[(a * (b * c)) * c] * (0 * c) 5 (a * b) * (0 * c)

(a * (b * c)) * (c % (0 * c)) 5 (a * b) * (0 * c)

a * (b * c) 5 (a * b) * (0 * c)

(7) Let b P I (a), c P I (d ), and a * d P L. Then b * a, a * d implies

b * d and b * d, d * c implies b * c.
Because b P I (a), then there is k P I (0) such that b 5 a * k. And so

b * c 5 (a * k) * c

On the other hand, c P I (d ) and there is q P I (0) such that c 5 d * q.
And so

b * c 5 (a * (d * q)) * k 5 ((a * d ) * (0 * q)) * k

5 (a * d ) * (k % (0 * q))

5 (a * d ) * (k * (0 * ( * q))) 5 (a * d ) * (k * q)

This means that b * c P I (a * d ). n

Let L be a DS and + 5 {I (a); a P L}. Then + is the set of the class

of equivalence and we can define the operation * on + in the following way:

I (a) * I (b) iff a * b is defined

From the previous lemmas L can be organized as a D-poset such that

I (a) # I (b) iff I (b) * I (a) is defined

Now we can formulate the following proposition.

Proposition 2.4. Let L be a DS and + 5 {I (a); a P L}. Then the triple

(+, * , # ) is a D-poset.

Proof. It is enough to show that # is a partially ordering.
Let a P L and b P I (0). Then a * b P L. Hence I (0) # I (A) for any

I (a) P +.

For any a P L, I(a) 5 I (0). Let I (a) # I (b) and I (b) # I (a). This

means that a * b, b * a P L. From this it follows that I (a) 5 I (b).
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Let I (a) # I (b) # I (c). Then c * b, b * a P L. This implies that c
* a is defined. Hence I (a) # I (c). n

Let L be a DS. It is clear that the set {I (0a); a P L} is the union of

disjoint abelian groups.

Proposition 2.5. Let L be a DS. If D (L) 5 (L 2 I (0)) ø {0a; a P L},

then a partial relation # such that for a, b P L, a # b iff a * b P D (L) is

a partial ordering on L and D (L) is a sub-DS.

Proof. If a, b P L, and a # b and b # a, then a * b, b * a P D (L) and

hence a * b, b * a P D (L) ù I (0). Therefore a * b 5 b * a 5 0a , and

from this we get a 5 b.
It is clear that for any a P L, a * a 5 0a P D (L).

Let a # b and b # c. From the assumption we have that c * b, b *
a P D (L), and hence c * a P L. If a * c P L, then a * c and c * b P
L imply a * b P L. Thus we have a * b, b * a P L, hence a 5 b, and

therefore a # c. If a * c does not exist in L, then c * a P D (L) and this

implies a # c.
It is clear that (d1) and (d2) hold in D (L). The property (d3) follows

directly from the proof of the transitivity law for the partial ordering #
on L. n

From the previous results it follows that for any b P I (0) and a P D
(L) such that 0a 5 0b there holds b # a.

Let L be a DS. We will say that the zero class of L is trivial if I (0) 5
{0a; a P L}. If for any a, b P L, 0a 5 0b and the zero class of L is trivial,

then L is the known D-poset (KoÃpka and ChovaÂnec, 1994).

If we define the partial operation % D through

a % D b exists iff there is c P L such that c * a 5 b, c * b 5 a

then it is easy to show that for the operation % D , the commutative and the
associative law are satisfied, and if a, b P I (0), then a % b 5 a % D b 5 a
% L b. It is clear that for any a P L and b P I (0), there exists a % D b and

a % D b 5 a * (0a * b).

3. EXAMPLES

It is known that on Boolean algebras, Abelian groups, and orthomodular

lattices, a partial operation * can be defined such that these structures are
DS. It is not surprising that if L is a Boolean algebra or an orthomodular

lattice, then the zero class I (0) is trivial and for a, b P L, a * b P L iff a
# b. If L is an Abelian group, then I (0) 5 L, because for a, b P L, a * b
5 a 2 b, where ª 2 º is the usual group operation.
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Example 3.1. Let G be the cyclic Abelian group {0; 1; 2; 3; 4; 5; 6; 7;

8; 9; 10} and for a, b P G, a * b 5 a 2 b. Then G is a DS.

Let A1 5 {0; 1; 7}. Then A1 is a DS and I (0) is trivial.
Let A2 5 {0; 1; 2; 9}. The A2 is not a DS, because 2 * 0; 0 * 0 P

A2, but 2 * 9 ¸ A2.

Let A3 5 {0; 1; 2; 3; 4}. The set A3 is a DS with the trivial zero class.

For any a, b P A3, {a 2 b, b 2 a} ù A3 Þ 0¤, but, for example, 3 % 2 ¸ A3.

Let A4 5 {0; 1; 2; 5; 6; 7}. The set A4 is a DS and I (0) 5 {0; 5}, D (A4) 5
{0; 1; 2; 6; 7}. The set A4 5 {I (0), I (1), I (2)} is D-poset and I (1) 5 I (6) 5 {1,
6}, I (2) 5 I (7) 5 {2, 7}.

This set provides the answer to the question: ª Let L be a DS and a *
b, b * a P L. Do the elements a, b belong to I (0)?º Our answer is no,

because 1; 6 P A4 1 * 6 P I (0), but 0 * 1; 0 * 6 ¸ A4.

Example 3.2. Let ( V , 6, P) be a classical probability space and PA be a
conditional probability measure in the classical sense for a set A P 6, such

that P (A) Þ 0. Let us denote 3 5 {PA; A P 6 and P (A) Þ 0} and 30 5
{1 2 PA

c; A P 6 and P (A) 5 0}. Now we define a map a from 6 to 3 ø
30 by the following a (A) 5 PA if P (A) Þ 0 and a (A) 5 1 2 P (A c) if P (A) jy

Let ^ 5 { a (A); A P S}. Then the double (^, * ) is a DS if the partial

operation * is defined as follows:

a (A) * a (B) is defined iff P (A c ù B) 5 0

and moreover a (A) * a (B) 5 a (A ù B c). If we define on the set ^ the

partial operation % such that a (A) % a (B) iff P (A ù B) 5 0, and moreover

a (A) % a (B) 5 a (A ø B), then (^, % ) can be organized as an orthoalgebra.

The set I (0) 5 { a (A); P (A) 5 0 for A P 6} and I ( a (A)) 5 { a (B); P (A n
B) 5 0}, where A n B 5 (A c ù B) ø (A ù B c).
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