Decomposition of D-Sets

Olga Nánásiová¹

Received July 4, 1997

The main result of this paper is the proof of a connection between abelian groups and difference sets. From this fact we can show that any difference set can be organized to a difference poset as a class of equivalence. We give an example of a difference set as a conditional probability space in the sense of Kolmogoroff.

1. INTRODUCTION

Definition 1.1 (Nánásiová, 1995). Let *L* be a nonempty set and \ominus be a partial binary operation on *L.* Then the set *L* will be called a *difference set* (DS) if the following conditions hold:

- (d1) for any $a \in L$, $a \ominus a \in L$;
- (d2) if *a*, *b*, $a \ominus b \in L$, then $a \ominus (a \ominus b) \in L$ and, moreover, $a \ominus$ $(a \ominus b) = b$;
- (d3) *the transitive law* if *a, b, c, a* \ominus *b, b,* \ominus *c* \in *L,* then *a* \ominus *c* \in *L* and, moreover, $(a \ominus c) \ominus (a \ominus b) = b \ominus c$.

We will denote $a \ominus a = 0$ _a.

Definition 1.2 (Nánásiová, 1995). Let *L* be a DS. The set *L* will be called a *group difference set* (GDS) if the following condition is satisfied:

 $(d4)$ $a \ominus b \in L$ iff $b \ominus a \in L$.

Definition 1.3 (Nanasiova, 1995). Let *L* be a DS. If $0_b \oplus b \in L$, we define $a \oplus b := a \ominus (0, b \ominus b)$ iff $a \ominus b \in L$.

If L is a DS, then the following properties are satisfied (Nanasiova, 1995):

(1) for any $a \in L$, $a \ominus 0$ _{*a*} $\in L$ and $a \ominus 0$ _{*a*} = *a*;

 1 Katedra Matematiky a Deskriptívnej Geometrie, Stavebná Fakulta STU, 813 63 Bratislava, Slovenská; e-mail address: nanasio@cvt.stuba.sk.

(2) if $c \ominus a \in L$, then $0_a = 0_c = 0_c$ *a*;

(3) if $c \ominus a = d$, then $c \ominus d = a$;

(4) if $c \ominus b$, $(c \ominus b) \ominus a \in L$, then $c \ominus a$, $(c \ominus a) \ominus b \in L$ and $(c \ominus a) \ominus b$ \ominus *b*) \ominus *a* = (*c* \ominus *a*) \ominus *b*.

If *L* is a *GDS*, then:

(5) for any $a \in L$, $0_a \ominus a \in L$;

(6) for *a*, *b*, $\in L$, $a \oplus b \in L$ iff $0_a = 0_b$;

(7) for $a \ominus b \in L$, $a \ominus b = 0$, $\ominus (b \ominus a)$;

(8) the set $G(a) = \{b \in L: 0_a = 0_b\}$ is an Abelian group with respect to the operation \ominus ;

(9) if for any *a*, $b \in L$, $0_a = 0_b$, then *L* is an Abelian group with respect to the operation \ominus .

Proposition 1.1 (Nánásiová, 1995). *L* is a GDS if it can be written as a disjoint union of abelian groups. Conversely every such disjoint union is a GDS.

From the last proposition it follows that if *L* is a GDS, then *L* is an Abelian group iff for every *a*, $b \in L$, $0_a = 0_b$.

Lemma 1.2. Let *L* be a DS. Then the following properties hold: (1) If *b*, $a, 0, a \oplus a \in L$, then $0, a = 0$ iff $b \oplus a \in L$; (2) If $0_a \ominus a$, $a \ominus b$, $\in L$, then $0_a \ominus b$, $b \ominus a \in L$.

Proof. (1) It is enough to show that $0_a = 0_b$ implies $b \ominus a \in L$. Let 0_a $= 0$ _b and b, a, $0_a \oplus a \in L$. Then $b \oplus 0_a$, $0_a \oplus a \in L$, and from (d3) it follows that $b \ominus a \in L$.

(2) If $0_a \ominus a$, $a \ominus b$, $\in L$, then (d3), $0_a \ominus b \in L$ and $a \ominus 0_a$, $0_a \ominus b$ $\in L$ imply that $b \ominus a \in L$.

If *L* is a DS and for any *a*, $b \in L$, $0_a = 0_b$, then from the previous lemma we get that *a*, $0 \oplus a \in L$ implies that for any $b \in L$, $b \oplus a$ exists in *L*. If $0 \ominus a$, $a \ominus b \in L$, then $0 \ominus b$, $b \ominus a \in L$. An example will show that $b \ominus a$, $a \ominus b$, $\in L$ does not imply $0 \ominus a$, $0 \ominus b \in L$.

2. D-POSET AND GROUP

In the following we will assume *L* is a DS with only one zero. This means that for any *a*, $b \in L$, $0_a = 0_b$.

Definition 2.1. Let *L* be DS. A subset of *L, I*(0) 5 {*b* P *L; a* * *b*, $b \ominus a \in L$, will be called a *zero class.*

Lemma 2.1. Let L be a set with the properties (d1), (d2). Then the transitive law (d4) is fulfilled iff the following associative law holds: If *a,*

b, $a \ominus b$, $(a \ominus b) \ominus c \in L$, then $a \ominus c$, $(a \ominus c) \ominus b \in L$ and $(a \ominus b) \ominus$ $c = (a \ominus c) \ominus b$.

Proof. It is enough to show only that the associative law implies (d4), because the opposite implication is proved in Nanasiova (1995). Let $a \ominus b$, $b \ominus c \in L$. Then $b = a \ominus (a \ominus b)$, hence $b \ominus c = [a \ominus (a \ominus b)] \ominus c$. This implies that $a \ominus c$, $(a \ominus c) \ominus (a \ominus b) \in L$, and $(a \ominus c) \ominus (a \ominus b) = b \ominus c$.

Lemma 2.2. Let *L* be DS. Then the following properties hold:

(1) If $a \ominus b \in I(0)$, then $0 \ominus (a \ominus b) = (b \ominus a)$.

(2) For any *a*, $b \in I(0)$, $a \oplus b$ is defined and belongs to $I(0)$.

(3) The zero class $I(0)$ is an Abelian group.

(4) For any $a \oplus L$ and any $b \in I(0)$ the element $a \oplus b$ is defined.

(5) If $a \in L$, $b \in I(0)$, and $b \ominus a$ is defined, then $a \in I(0)$.

Proof. (1) Let $a \ominus b \in I(0)$. From the definition of $I(0)$ it follows that $0 \ominus (a \ominus b)$ is defined and moreover.

$$
0 \ominus (a \ominus b) = (a \ominus a) \ominus (a \ominus b) = (a \ominus (a \ominus b)) \ominus a = b \ominus a
$$

(2) Let *a*, $b \in I(0)$. Then $a \ominus 0$, $0 \ominus b$ implies $a \ominus b \in L$. On the other hand, $b \ominus 0$, $0 \ominus a$ implies $b \ominus a \in L$. And from (1) we get $a \ominus b$ $\in I(0)$.

(3) Let *a*, $b \in I(0)$; then we define the operation $a \oplus b := a \ominus (0 \ominus$ *b*). In the following we show that the set $I(0)$ is an Abelian group with operation \oplus .

From (2) it follows that $a \ominus (0 \ominus b)$, $b \ominus (0 \ominus a)$, $(0 \ominus a) \ominus b$, $(0 \ominus a)$ $b) \ominus a \in I(0)$. And then $((0 \ominus b) \ominus a) \ominus ((0 \ominus a) \ominus b) \in I(0)$ and moreover

$$
((0 \ominus b) \ominus a) \ominus ((0 \ominus a) \ominus b)
$$

$$
= [(0 \ominus b) \ominus ((0 \ominus a) \ominus b)] \ominus a
$$

$$
= [(0 \ominus ((0 \ominus a) \ominus b)) \ominus b] \ominus a = [(b \ominus (0 \ominus a)) \ominus b] \ominus a
$$

$$
= [(b \ominus b) \ominus (0 \ominus a)] \ominus a = [0 \ominus (0 \ominus a)] = a \ominus a = 0
$$

From this it follows that $(0 \ominus b) \ominus a = (0 \ominus a) \ominus b$. Then $0 \ominus (0 \ominus b)$ \Rightarrow *a*) = 0 \Rightarrow ((0 \Rightarrow *a*) \Rightarrow *b*) and so *b* \Rightarrow (0 \Rightarrow *a*) = *a* \Rightarrow (0 \Rightarrow *b*). This means $a \oplus b = b \oplus a$.

Let *a*, *b*, $c \in I(0)$. Then $(a \oplus b) \oplus c$, $(a \oplus c) \oplus b$ $\in I(0)$, and $(a \oplus c)$ *b*) \oplus *c* = (*a* \ominus (0 \ominus *b*)) \ominus (0 \ominus *c*) = (*a* \ominus (*a*) \ominus (*0* \ominus *b*) = (*a* \oplus *c*) $\oplus b$).

Let *c*, *d*, $a \in I(0)$ and $c \bigoplus a = d \bigoplus a$. Then $= c \bigoplus (0 \bigoplus a) = d \bigoplus a$ $(0 \ominus a)$. From this we get

$$
(0 \ominus a) \ominus c = (0 \ominus a) \ominus d
$$

$$
d = (0 \ominus a) \ominus ((0 \ominus a) \ominus c) = c
$$

For any $a \in I(0)$, $a \oplus (0 \ominus a) = a \ominus (0 \ominus a) = a \ominus a = 0$. This means that $I(0)$ is an Abelian group.

(4) Let $a \in L$ and $b \in I(0)$. Then $a \ominus 0$, $0 \ominus b$ implies $a \ominus b$.

(5) Let $a \in L$, $b \in I(0)$, and $b \ominus a \in L$. Then $0 \ominus b$, $b \ominus a \in L$ implies $0 \ominus a \in L$.

From this it follows that $a \in I(0)$.

Let $a \in L$ and $k \in I(0)$. Then $a \oplus_b k := a \ominus (0 \ominus k)$.

Lemma 2.3. Let *L* be a DS. If for $a \in L$ we define $I(a) = \{b \in L : b$ Θ *a* \in *I*(0)}. Then the following statements hold.

(1) For any *b*, $c \in I(a)$, $c \ominus b \in I(0)$.

(2) The element $b \in I(a)$ iff $I(b) = I(a)$.

(3) For any $a \in L$, $I(a) = \{a \oplus k; k \in I(0)\}.$

(4) For any $a \in L$, $I(a) = \{a \bigoplus_L k; k \in I(0)\}.$

(5) For any $a \in L$ and for any $p, q \in I(0), a \ominus (p \oplus q) = (a \ominus p) \ominus q$.

(6) Let *b*, $a \in L$ and $c \in I(0)$; then $a \ominus (b \ominus c)$ is defined and moreover

 $(a \ominus (b \ominus c)) = (a \ominus b) \ominus (0 \ominus c)$

(7) Let $b \in I(a)$, $c \in I(d)$, and $a \ominus d \in L$. Then

$$
b\ominus d\in L
$$

and moreover $b \ominus c \in I(a \ominus d)$.

Proof. (1) If *b,* $c, \in I(a)$, then $b \ominus a$, $a \ominus c \in L$. This implies $b \ominus c$ $E \in L$. On the other hand $c \ominus a$, $a \ominus b$ implies $c \ominus b \in L$. This means that $c \ominus b \in I(0).$

(2) Let $b \in I(a)$. Then $a \ominus b \in I(0)$. This implies $a \in I(b)$. Moreover, if $c \in I(a)$, then $c \ominus b \in I(0)$. From this it follows that $I(a) = I(b)$.

(3) Let $b \in I(a)$. Then $a \ominus b \in I(0)$. This means that there is $k \in I(0)$ such that $a \ominus b = k$. Then $a \ominus k = b$. From this $I(a) = \{a \ominus k; k \in I(0)\}.$

(4) It follows directly from definition \bigoplus_L and (3).

(5) Let $a \in L$ and $p, q \in I(0)$. Then $a \ominus (p \oplus q), a \ominus p \in I(a)$. Then $I(a) = I(a \ominus p)$ and so $(a \ominus p) \ominus q \in I(a)$. From this it follows that there is $[(a \ominus p) \ominus q] \ominus [a \ominus (p \oplus q)]$ and moreover

$$
[(a \ominus p) \ominus q] \ominus [a \ominus (p \oplus q)]
$$

=
$$
[(a \ominus p) \ominus [a \ominus (p \oplus q)]] \ominus q
$$

=
$$
[(a \ominus [a \ominus (p \oplus q)]) \ominus p] \ominus q
$$

=
$$
[(p \oplus q) \ominus p] \ominus q = [(p \ominus (0 \ominus q)) \ominus p] \ominus q
$$

=
$$
[(p \ominus p) \ominus (0 \ominus q)] \ominus q = (0 \ominus (0 \ominus q)) \ominus q = q \ominus q = 0
$$

And so $(a \ominus p) \ominus q = a \ominus (p \oplus q)$. (6) Let *a, b* \in *L* and *c* \in *I*(0). Then $a \ominus b$, $b \ominus c$ implies $a \ominus c \in L$ and

$$
(a \ominus c) \ominus (a \ominus b) = b \ominus c
$$

\n
$$
(a \ominus c) \ominus (b \ominus c) = a \ominus b
$$

\n
$$
(a \ominus (b \ominus c)) \ominus c = a \ominus b
$$

\n
$$
[(a \ominus (b \ominus c)) \ominus c] \ominus (0 \ominus c) = (a \ominus b) \ominus (0 \ominus c)
$$

\n
$$
(a \ominus (b \ominus c)) \ominus (c \oplus (0 \ominus c)) = (a \ominus b) \ominus (0 \ominus c)
$$

\n
$$
a \ominus (b \ominus c) = (a \ominus b) \ominus (0 \ominus c)
$$

(7) Let $b \in I(a)$, $c \in I(d)$, and $a \ominus d \in L$. Then $b \ominus a$, $a \ominus d$ implies $b \ominus d$ and $b \ominus d$, $d \ominus c$ implies $b \ominus c$.

Because $b \in I(a)$, then there is $k \in I(0)$ such that $b = a \ominus k$. And so

$$
b \ominus c = (a \ominus k) \ominus c
$$

On the other hand, $c \in I(d)$ and there is $q \in I(0)$ such that $c = d \ominus q$. And so

$$
b \ominus c = (a \ominus (d \ominus q)) \ominus k = ((a \ominus d) \ominus (0 \ominus q)) \ominus k
$$

= $(a \ominus d) \ominus (k \oplus (0 \ominus q))$
= $(a \ominus d) \ominus (k \ominus (0 \ominus (\ominus q))) = (a \ominus d) \ominus (k \ominus q)$

This means that $b \ominus c \in I(a \ominus d)$.

Let *L* be a DS and $\mathcal{L} = \{I(a); a \in L\}$. Then \mathcal{L} is the set of the class of equivalence and we can define the operation \ominus on $\mathcal L$ in the following way:

 $I(a) \ominus I(b)$ iff $a \ominus b$ is defined

From the previous lemmas *L* can be organized as a D-poset such that

$$
I(a) \leq I(b) \qquad \text{iff} \quad I(b) \ominus I(a) \text{ is defined}
$$

Now we can formulate the following proposition.

Proposition 2.4. Let *L* be a DS and $\mathcal{L} = \{I(a); a \in L\}$. Then the triple $(\mathcal{L}, \ominus, \leq)$ is a D-poset.

Proof. It is enough to show that \leq is a partially ordering.

Let $a \in L$ and $b \in I(0)$. Then $a \ominus b \in L$. Hence $I(0) \leq I(A)$ for any $I(a) \in \mathcal{L}$.

For any $a \in L$, $I(a) = I(0)$. Let $I(a) \leq I(b)$ and $I(b) \leq I(a)$. This means that $a \ominus b$, $b \ominus a \in L$. From this it follows that $I(a) = I(b)$.

Let $I(a) \leq I(b) \leq I(c)$. Then $c \ominus b$, $b \ominus a \in L$. This implies that *c* Θ *a* is defined. Hence $I(a) \leq I(c)$.

Let *L* be a DS. It is clear that the set $\{I(0_a); a \in L\}$ is the union of disjoint abelian groups.

Proposition 2.5. Let *L* be a DS. If $D(L) = (L - I(0)) \cup \{0_a; a \in L\},\$ then a partial relation \leq such that for *a, b* \in *L, a* \leq *b* iff *a* \ominus *b* \in *D*(*L*) is a partial ordering on *L* and *D* (*L*) is a sub-DS.

Proof. If *a,* $b \in L$, and $a \leq b$ and $b \leq a$, then $a \ominus b$, $b \ominus a \in D(L)$ and hence $a \ominus b$, $b \ominus a \in D(L) \cap I(0)$. Therefore $a \ominus b = b \ominus a = 0_a$, and from this we get $a = b$.

It is clear that for any $a \in L$, $a \ominus a = 0$ _{*a*} $\in D(L)$.

Let $a \leq b$ and $b \leq c$. From the assumption we have that $c \ominus b$, $b \ominus$ $a \in D(L)$, and hence $c \ominus a \in L$. If $a \ominus c \in L$, then $a \ominus c$ and $c \ominus b \in L$ *L* imply $a \ominus b \in L$. Thus we have $a \ominus b$, $b \ominus a \in L$, hence $a = b$, and therefore $a \leq c$. If $a \ominus c$ does not exist in *L*, then $c \ominus a \in D(L)$ and this implies $a \leq c$.

It is clear that (d1) and (d2) hold in $D(L)$. The property (d3) follows directly from the proof of the transitivity law for the partial ordering \leq on L \blacksquare

From the previous results it follows that for any $b \in I(0)$ and $a \in D$ (*L*) such that $0_a = 0_b$ there holds $b \le a$.

Let *L* be a DS. We will say that the zero class of *L* is *trivial* if $I(0) =$ ${0_a; a \in L}$. If for any *a*, $b \in L$, $0_a = 0_b$ and the zero class of *L* is trivial, then L is the known D-poset (Kôpka and Chovánec, 1994).

If we define the partial operation \bigoplus_{D} through

 $a \oplus_b b$ exists iff there is $c \in L$ such that $c \ominus a = b$, $c \ominus b = a$

then it is easy to show that for the operation \oplus_{D} , the commutative and the associative law are satisfied, and if *a*, $b \in I(0)$, then $a \oplus b = a \oplus_b b = a$ $\bigoplus_L b$. It is clear that for any $a \in L$ and $b \in I(0)$, there exists $a \bigoplus_D b$ and $a \oplus_b b = a \ominus (0_a \ominus b).$

3. EXAMPLES

It is known that on Boolean algebras, Abelian groups, and orthomodular lattices, a partial operation \ominus can be defined such that these structures are DS. It is not surprising that if *L* is a Boolean algebra or an orthomodular lattice, then the zero class $I(0)$ is trivial and for $a, b \in L$, $a \ominus b \in L$ iff a $\leq b$. If *L* is an Abelian group, then $I(0) = L$, because for *a*, $b \in L$, $a \ominus b$ $= a - b$, where " $-$ " is the usual group operation.

Example 3.1. Let *G* be the cyclic Abelian group {0; 1; 2; 3; 4; 5; 6; 7; 8: 9: 10} and for *a, b* \in *G, a* \ominus *b* = *a* - *b.* Then *G* is a DS.

Let $A_1 = \{0; 1; 7\}$. Then A_1 is a DS and $I(0)$ is trivial.

Let $A_2 = \{0; 1; 2; 9\}$. The A_2 is not a DS, because $2 \ominus 0; 0 \ominus 0 \in$ *A*₂, but $2 \ominus 9 \notin A_2$.

Let $A_3 = \{0; 1; 2; 3; 4\}$. The set A_3 is a DS with the trivial zero class. For any *a*, $b \in A_3$, $\{a - b, b - a\} \cap A_3 \neq \emptyset$, but, for example, $3 \oplus 2 \notin A_3$.

Let $A_4 = \{0; 1; 2; 5; 6; 7\}$. The set A_4 is a DS and $I(0) = \{0; 5\}$, $D(A_4) =$ ${0; 1; 2; 6; 7}$. The set $A_4 = {I(0), I(1), I(2)}$ is D-poset and $I(1) = I(6) = {1, 6}$. 6}, $I(2) = I(7) = \{2, 7\}.$

This set provides the answer to the question: "Let L be a DS and $a \ominus a$ *b,* $b \oplus a \in L$ Do the elements *a, b* belong to *I*(0)?" Our answer is no, because 1; $6 \in A_4$ 1 \ominus 6 $\in I(0)$, but $0 \ominus 1$; $0 \ominus 6 \notin A_4$.

Example 3.2. Let (Ω, \mathcal{G}, P) be a classical probability space and P_A be a conditional probability measure in the classical sense for a set $A \in \mathcal{G}$, such that $P(A) \neq 0$. Let us denote $\mathcal{P} = \{P_A; A \in \mathcal{G} \text{ and } P(A) \neq 0\}$ and $\mathcal{P}_0 =$ ${1 - P_A^c}$; $A \in \mathcal{G}$ and $P(A) = 0$. Now we define a map α from \mathcal{G} to \mathcal{P} U \mathcal{P}_0 by the following $\alpha(A) = P_A$ if $P(A) \neq 0$ and $\alpha(A) = 1 - P(A^c)$ if $P(A)$ jy Let $\mathcal{F} = {\alpha(A); A \in S}$. Then the double (\mathcal{F}, Θ) is a DS if the partial operation \ominus is defined as follows:

$$
\alpha(A) \ominus \alpha(B) \quad \text{is defined} \quad \text{iff } P(A^c \cap B) = 0
$$

and moreover $\alpha(A) \ominus \alpha(B) = \alpha(A \cap B^c)$. If we define on the set $\mathcal F$ the partial operation \oplus such that $\alpha(A) \oplus \alpha(B)$ iff $P(A \cap B) = 0$, and moreover $\alpha(A) \oplus \alpha(B) = \alpha(A \cup B)$, then (\mathscr{F}, \oplus) can be organized as an orthoalgebra. The set $I(0) = {\alpha(A); P(A) = 0$ for $A \in \mathcal{G}}$ and $I(\alpha(A)) = {\alpha(B); P(A \triangle)}$ B) = 0, where $A \triangle B = (A^c \cap B) \cup (A \cap B^c)$.

REFERENCES

- Kôpka, F., and Chovanec, F. (1994). D-poset, *Mathematica Slovaca*, 44, 21–34.
- Foulis, D. J., and Bennett, M. K. (1994). Effect algebras and unsharp quantum logics, *Foundations of Physics*, **24**, 1325-1346.
- Foulis, D. J., and Bennett, M. K. (1995). Suns and products of interval algebras, *International Journal of Theorical Physics*, 33, 2119-2136.
- NaÂnaÂsiovaÂ, O. (1995). D-set and groups, *International Journal of Theoretical Physics,* **34**, 1637±1642.

Kolmogoroff, A. N. (1933). *Grundbegriffe der Wahrscheikchkeilsrechnung* , Springer, Berlin.

Foulis, D. J., Greechie, R. J. and Rüttiman, G. T. (1992). Filters and supports in orthoalgebras, *International Journal of Theoretical Physics,* 31, 789-802.