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Decomposition of D-Sets
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The main result of this paper is the proof of a connection between abelian groups
and difference sets. From this fact we can show that any difference set can be
organized to a difference poset as a class of equivalence. We give an example
of a difference set as a conditional probability space in the sense of Kolmogoroff.

1. INTRODUCTION

Definition 1.1 (Nanasiova, 1995). Let L be a nonempty set and S be a
partial binary operation on L Then the set L will be called a difference set
(DS) if the following conditions hold:

(dl) foranya €L aSa €L

(d2) ifa b, a =S b €L, thena O (¢ S b) € L and, moreover, a S
(a S b) = b

(d3) the transitive law if a, b, ¢, a © b, b, Sc¢ € L, thena Sc €L
and, moreover, (¢ S ¢) S (a S b) =b S c.

We will denote a S a = 0,.

Definition 1.2 (Nanasiova, 1995). Let L be a DS. The set L will be
called a group difference set (GDS) if the following condition is satisfied:

) aSbheliffbSacl

Definition 1.3 (Nanasiova, 1995). Let Lbe a DS. If 0, © b € L, we
definea Bb:=a =0, Sb)iffa Sh €L
If Lis a DS, then the following properties are satisfied (Nanasiova, 1995):

() foranya € L, a S0, € Land a S 0, = a;
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(2)ifc S a €L, then0, =0, = 0.4

(B)ifc=a=d thencSd=a

@ ifcoeb, (coOb)SaecLthencSa, (cSa) S b elLand (¢
S b) Sa=(cSa) S b

If Lis a GDS, then:

(5) foranya € L, 0, S a € L,

(6) fora, b, € I, a © b € Liff 0, = 05;

(7NN forasbel,bacsbhb=0,S((bSa)

(8) the set G(a) = {b € L: 0, = 05} is an Abelian group with respect
to the operation S;

(9) if for any a, b € L, 0, = 0p, then L is an Abelian group with respect
to the operation ©.

Proposition 1.1 (Nanasiova, 1995). L is a GDS if it can be written as
a disjoint union of abelian groups. Conversely every such disjoint union is
a GDS.

From the last proposition it follows that if L is a GDS, then L is an
Abelian group iff for every a, b € L, 0, = 0.

Lemma 1.2. Let L be a DS. Then the following properties hold:
() Ifb, a,0,5a €L, then0,=0,iff b Sa €L,
2 If0,9a, a<S b, €L then0, S b bSaclL

Proof. (1) Tt is enough to show that 0, = 0, implies b © a € L Let 0,
=0,and b, a, 0, S a € L. Then b S 0,, 0, S a € L, and from (d3) it
follows that b S a € L.

2 If0, S a, a S b, €L, then (d3),0, S b € Land a ©0,, 0, S b
€ Limply thath Sa €L =

If Lis a DS and for any a, b € L, 0, = 0p, then from the previous
lemma we get that @, 0 © a € L implies that for any b € L, b S a exists
mLIf0Sa aSbel then0) S b b S a e L An example will show
that b S a, a © b, € L does not imply 0 S a, 0 S b € L

2. D-POSET AND GROUP

In the following we will assume L is a DS with only one zero. This
means that for any @, b € L, 0, = 0.

Definition 2.1. Let L be DS. A subset of L, I(0) = {b € L; a © b,
b S a € L}, will be called a zero class.

Lemma 2.1. Let L be a set with the properties (d1), (d2). Then the
transitive law (d4) is fulfilled iff the following associative law holds: If «,
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baSh (acb)Scel, thena Sce,(aSc¢)S b eLland (a ©b) S
c=(aSc)Sh

Proof. 1t is enough to show only that the associative law implies (d4),
because the opposite implication is proved in Nanasiova (1995). Let a © b,
bSceL Thenb =a S (a Sb), hence b S ¢ =[a S (a S b)] & c This
impliesthata S ¢, (aSc) S (@Sbh) €l,and (@S ) S (@Sbh)=bSc. =

Lemma 2.2. Let L be DS. Then the following properties hold:

() Ifa S b €1(0), then 0 S (a © b) = (b S a).

(2) For any a, b, € I(0), a S b is defined and belongs to 7(0).

(3) The zero class 1(0) is an Abelian group.

(4) For any ¢ © L and any b € I(0) the element a S b is defined.
(5)Ifa € L, b € I(0), and b S a is defined, then a € I(0).

Proof. (1) Let a © b € I(0). From the definition of 7(0) it follows that
0 S (a S b) is defined and moreover.

08@sSh)=@Sa)S@Sbh)=W@S@Sbh)Sa=bSa

(2) Let @, b € I(0). Then a S 0, 0 © b implies a S b € L On the
other hand, » © 0, 0 S a implies b S a € L And from (1) we get a S b
e 1(0).

(3) Let a, b € I1(0); then we define the operation ¢ b b := a S (0 S
b). In the following we show that the set 7(0) is an Abelian group with
operation <b.

From (2) it follows that a © (0 S b), b S (0 S a), (0 S a) S b, (0 S
b) S a €1(0). And then ((0 ©b) S a) S ((0 S a) S b) € 1(0) and moreover

(0Sb)Sa)S(0Sa) S b)
[0S S(0=a)Sh)]Sa
=02 ((OSa)2h)CbSa=[b=(0=a)=b]=a
=[boebh)c(05a)]Sa=[050Sa)]=a=a=0
From this it follows that (0 © b) S a = (0 S a) © b. Then 0 S (0 © b)
Sa)=0S (09 a)oSb)and sob S (0 S a) =a S (0 S b). This means
abb=bFa
Let a, b, ¢ € 1(0). Then (a £ b) B ¢, (a b ¢) B b) € 1(0), and (a B
D Ec=@S0Ch)C0S0)=w@=0Se) S0 =%
F b).
Lete,d ac€l(0)and c Pa=dPBa Then=cS (0S5 a)=d<S
(0 S a). From this we get

0sacc=(0Sa)Sd
d=05a)c(05a)Sc)=c
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Foranya € 1(0),a (0SS a) =a=S 0SS 0Sa) =aSa=0.
This means that 7/(0) is an Abelian group.

(4) Leta € Land b € 1(0). Then a © 0, 0 © b implies a S b.
B)Leta e L bel0),and b Sa €L Then0 S b b Sacl
implies 0 S a € L

From this it follows that « € 1(0). m
Leta € Land k € I(0). Then a By k:= a © (0 S k).

Lemma 2.3. Let L be a DS. If for a € L we define I(a) = {b € L; b
S a € 1(0)}. Then the following statements hold.

(1) For any b, ¢ € I(a), c © b € I1(0).

(2) The element b € I(a) iff I(b) = I(a).

(3) Forany a € L, Ia) = {a S k' k € 1(0)}.

(4) For any a € L, a) = {a BL k' k € 1(0)}.

(5) Forany @ € Land forany p, ¢ €1(0),a S (p B¢g) = (a Sp) Sq.

(6) Let b, a € Land ¢ € 1(0); then a © (b © c¢) is defined and moreover

@) =w@ob)= (0SS0
(7) Let b € I(a), ¢ € I(d), and @ = d € L Then
bodel
and moreover b S ¢ € I(a © d).

Proof. (1) If b, ¢, € I(a), then b S a, a S ¢ € L This implies b S ¢
€ L On the other hand ¢ S a, a © b implies ¢ © b € L This means that
¢S b el

(2) Let b € I(a). Then a S b € I(0). This implies a € I(b). Moreover,
if ¢ € I(a), then ¢ © b € I(0). From this it follows that I(a) = I(b).

(3) Let b € I(a). Then a © b € I1(0). This means that there is k € 1(0)
such that « © b = k. Then a S k = b. From this I(a) = {a S k; k € 1(0)}.

(4) Tt follows directly from definition & and (3).

(5) Leta € Land p, g € I(0). Thena S (p £ g), a S p € I(a). Then
I(a) = I(a S p) and so (a S p) S q € I(a). From this it follows that there
is[(a ©p) ©q] S[a = (p P g)] and moreover

[(a=p)SqlSlaS(pFg)]
=l@aepSla=S(@ETPll Sq
=l@=la=(pd 9D Spl S9q
=[p P9 SplSq=lp=0S9)Spl =g
=lpepc0S9l=qg=050S9)=qg=q9q=Sg¢g=0
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Andso (e Sp) S qg=a S (p D).
(6) Leta, b € Land ¢ € I(0). Thena S b, b S ¢ implies a © ¢ € Land

@SS @sSh)=boc

@sosbos)=ash

a@sbse)Sc=ash
[aesbo))ccs(0sce)=(@Sh) S(0S0)
@) c(cBOs)=(@@ob) S (0950
acs(boc)=(@ob)o (0S¢

(7) Letb €1(a), c €1(d),and a S d € L. Then b S a, a S d implies
bSdand b S d d S ¢ implies b © c.
Because b € I(a), then there is k € I(0) such that b = a S k. And so

bSc=@Sk Sc

On the other hand, ¢ € I(d) and there is ¢ € I(0) such that ¢ = d S ¢.
And so

boScec=@odog)ck=(acd)S(0Sq) Sk
=@sd) S kEOSyg)
= WSSk SOSE)=@=d) S kg
This means that b S ¢ € I(a S d). =

Let Lbe a DS and & = {I(a); a € L}. Then £ is the set of the class
of equivalence and we can define the operation S on &£ in the following way:

I(a) S I(b) iff a © b is defined
From the previous lemmas L can be organized as a D-poset such that
I(a) < I(b) iff  1(b) S I(a) is defined
Now we can formulate the following proposition.

Proposition 2.4. Let Lbe a DS and & = {I(a); a € L}. Then the triple
(£, 5, <) is a D-poset.

Proof. Tt is enough to show that < is a partially ordering.

Leta € Land b € I(0). Then a © b € L Hence 1(0) < I(A) for any
I(a) € &.

For any @« € L, I(a) = I(0). Let I(a) = I(b) and I(h) = I(a). This
means that « © b, b S a € L From this it follows that I(a) = I(b).
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Let I(a) < I(b) < I(c). Then ¢ © b, b S a € L. This implies that ¢
© a is defined. Hence I(a) < I(c). m

Let L be a DS. It is clear that the set {/(0,); @ € L} is the union of
disjoint abelian groups.

Proposition 2.5. Let Lbe a DS. If D(L) = (L — I1(0)) U {0, a € L},
then a partial relation < such that fora, b € L, a < b iff a S b € D(L) is
a partial ordering on L and D (L) is a sub-DS.

Proof If a, b € L,and a < b and b < a, then aSh, bSa € D(L) and
hence a © b, b © a € D(L) N 1(0). Therefore a b =b S a = 0,, and
from this we get @ = b.

It is clear that for any a € L, a S a = 0, € D(L).

Let a < b and b < ¢. From the assumption we have that ¢ S b, b S
a € D(L),and hence c S a € L IfaSc €L, thena S cand c S b €
Limply a © b € L Thus we have a S b, b S a € L, hence a = b, and
therefore a < ¢. If @ S ¢ does not exist in L, then ¢ S a € D (L) and this
implies a < c.

It is clear that (d1) and (d2) hold in D(L). The property (d3) follows
directly from the proof of the transitivity law for the partial ordering =<
on L m

From the previous results it follows that for any » € I(0) and @ € D
(L) such that 0, = 0, there holds b < a.

Let L be a DS. We will say that the zero class of L is trivial if 1(0) =
{05 a € L}. If forany a, b € L, 0, = 0, and the zero class of L is trivial,
then L is the known D-poset (Kopka and Chovanec, 1994).

If we define the partial operation &) through

a PBp b exists iff there is c € Lsuchthat c S a =b,c S b =a

then it is easy to show that for the operation &p, the commutative and the
associative law are satisfied, and if ¢, b € 1(0), thena b =a $pb = a
&b, b. Tt is clear that for any @ € L and b € I(0), there exists a Pp b and
a Bpb=aS(0,Sb).

3. EXAMPLES

It is known that on Boolean algebras, Abelian groups, and orthomodular
lattices, a partial operation & can be defined such that these structures are
DS. It is not surprising that if L is a Boolean algebra or an orthomodular
lattice, then the zero class 1(0) is trivial and for ¢, b € L, a S b € Liff a
=< b. If Lis an Abelian group, then I(0) = L, because for @, b € L, a S b
= a — b, where “—" is the usual group operation.
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Example 3.1. Let G be the cyclic Abelian group {0; 1; 2; 3; 4; 5; 6; 7;
8;9; 10} and for a, b € G, a © b = a — b. Then G is a DS.

Let 41 = {0; 1; 7}. Then A4; is a DS and 1(0) is trivial.

Let 4, = {0; 1; 2; 9}. The A4, is not a DS, because 2 © 0; 0 S 0
Ay, but 2 S 9 & A,.

Let A3 = {0; 1; 2; 3; 4}. The set 43 is a DS with the trivial zero class.
Forany a, b € A3, {a — b, b — a} N A; # 0, but, for example, 3 & 2 & 4.

Let A4 = {0; 1;2; 5; 6; 7}. The set Asisa DS and 7(0) = {0; 5}, D (A4s) =
{0; 1;2; 6; 7}. The set Ay = {I1(0), I(1), I(2)} is D-poset and I(1) = I(6) = {1,
6}, 1(2) = I(7T) = {2, 7}.

This set provides the answer to the question: “Let L be a DS and a ©
b, b S a € L Do the elements a, b belong to 1(0)?” Our answer is no,
because 1; 6 €441 S 6 €1(0),but 0 S 1; 0 S 6 & Aa.

Example 3.2. Let (€} &, P) be a classical probability space and P4 be a
conditional probability measure in the classical sense for a set 4 € &, such
that P(A4) # 0. Let us denote ? = {Py; A € ¥ and P(A) # 0} and Py =
{1 — P; A €T and P(A) = 0}. Now we define a map a from ¥ to P U
Py by the following o(A4) = P4if P(4) # 0 and a(A4) = 1 — P(A°) if P(A) jy
Let F = {a(A4); A € S}. Then the double (¥, ©) is a DS if the partial
operation S is defined as follows:

o(A) S o(B) s defined iff P(4° N B) =0

and moreover a(A4) S o(B) = a4 N B). If we define on the set F the
partial operation & such that a(4) & ouB) iff P(4 N B) = 0, and moreover
o(A) P ou(B) = a4 U B), then (%, ) can be organized as an orthoalgebra.
The set 1(0) = {a(A); P(4) = 0 for 4 € ¥} and I(o(A)) = {o(B); P(A /\
B) = 0}, where 4 /A B=(4°N B) U (4 N B°).
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